Zentralabitur 2021	Physik		Erwartungshorizont
Aufgabe II a		eA	Prüfungszeit*: 300 min

^{*}Die Prüfungszeit setzt sich zusammen aus 270 min Bearbeitungszeit und 30 min Auswahlzeit.

Erwartungshorizont / Bewertungsbogen für den Prüfling:

(AFB: Anforderungsbereiche; BE 1: erreichbare Bewertungseinheiten; BE 2: vom o. a. Prüfling erreichte Bewertungseinheiten)

Aufgabe	Erwartete Prüfungsleistungen	Anforderungs- bereiche/Bewertung			
		AFB	BE 1	BE 2	
1.1	Erklären der Entstehung der Maxima mit den Kernpunkten: Elementarwellen- prinzip, unterschiedliche Weglängen bzw. Phasenunterschiede, Bedingungen für konstruktive Interferenz, subjektive Methode ergibt wahrgenommenes Bild.	ı	5		
	Herleiten der Gleichung mit geeigneten Ergänzungen der Skizze, z. B. mit den Kernpunkten: begründeter Ansatz ($\Delta s=n\cdot\lambda$), trigonometrische Betrachtungen für die subjektive Methode anhand der Skizze.	1/11	5		
1.2	Ermitteln der grünen und blauen Grenze des Wellenlängenbereichs z. B. als $\lambda_{\mathrm{grün}} \approx 580$ nm und $\lambda_{\mathrm{blau}} \approx 483$ nm aus dem gemessenen Abstand $a_1 = \frac{10,0~\mathrm{cm}}{2} = 5,0~\mathrm{cm}$ und den beiden gegebenen Abständen $e_{\mathrm{grün}} = 16,5~\mathrm{cm}$ und $e_{\mathrm{blau}} = 20,1~\mathrm{cm}$. Ermitteln der relativen Messunsicherheit für den Abstand e Spaltblende – Gitter z. B. als $\frac{\Delta e}{e} = \frac{3~\mathrm{mm}}{201~\mathrm{mm}} \approx 1,49\%$ und für den Abstand a_1 z. B. als $\frac{\Delta a_1}{a_1} = \frac{1~\mathrm{mm}}{50~\mathrm{mm}} = 2~\%$ und damit eine relative Messunsicherheit von mindestens $\frac{\Delta \lambda}{\lambda} = 2~\%$ für die	1/11	4		
	Wellenlänge λ und eine absolute Messunsicherheit von $\Delta\lambda\approx9.7~\mathrm{nm}$ für die kurzwellige Grenze.	II	3		
1.3	Vergleichen der Lage der Minima mit der Gemeinsamkeit der Minima bei 22,0 cm und weiteren Minima bei 23,3 cm und 20,5 cm nur für den Vierfachspalt.	1/11	2		
	 Erklären der Entstehung z. B. anhand von Phasenunterschieden zwischen den Phasenzeigern mit den Kernpunkten: 1. Für das Minimum (A) tritt paarweise destruktive Interferenz je zweier Wellen aus dem 1. und 2. sowie dem 3. und 4. Spalt mit einem Phasenunterschied von je Δφ = 180° auf. 2. Für das Minimum (B) tritt paarweise destruktive Interferenz der Lichtwellen aus dem 1. und 3. sowie dem 2. und 4. Spalt mit einem Phasenunterschied von 				
	je $\Delta arphi = 180^\circ$ auf.	11/111	5		
2.1	Skizzieren der Lichtwege incl. Rückweg zum Laser, z. B.:	ı	3		
	Erläutern mit den Kernpunkten: beide möglichen Lichtwege zum Sensor unterscheiden sich um die doppelte Längendifferenz der Strecken ST-SP1 und ST-SP2; Bedingung für destruktive und konstruktive Interferenz in Abhängigkeit vom Gang- unterschied am Sensor und Bezug zum Diagramm.				
	Ablesen von Δs aus Diagramm; $\lambda = 2\Delta s \approx 630$ nm.	II 	6		
	Skizzieren eines Graphen mit doppelter Periodenlänge.	II	2		

Zentralabitur 2021	Physik		Erwartungshorizont
Aufgabe II a		eA	Prüfungszeit*: 300 min

Aufgabe	Erwartete Prüfungsleistungen	Anforderungs- bereiche/Bewertung			
•		AFB	BE 1	BE 2	
2.2	Berechnen von $\lambda_{\rm K}$ z. B. ausgehend von $\lambda_{\rm K}=\frac{c_{\rm K}}{f}$ zu $\lambda_{\rm K}\approx 503$ nm.	ı	3		
	Ermitteln von $\Delta s=\frac{\lambda_K}{4}\approx 126$ nm aufgrund der Bedingung für destruktive Interferenz.	II	3		
2.3	Vergleichen anhand von Gemeinsamkeiten (zwei mögliche Wege unterschiedlicher Länge vom Laser zum Lichtsensor; Bedingung für destruktive und konstruktive Interferenz in Abhängigkeit von Δs) und Unterschieden (zwei unterschiedliche Weglängen in einem Lichtweg vereint statt zwei getrennter Lichtwege); die maximale relative Lichtintensität am Sensor ist bei M2a halb so hoch und bei M2c ein Viertel so hoch wie die des Lasers.	11/111	5		
3.1	Deuten der Beobachtung mit den Kernpunkten: LED-abhängige Mindestenergie, Energieabgabe durch einzelne Elektronen, Entstehung jeweils eines Photons.	ı	4		
3.2	Ermitteln des Zusammenhanges $E=h\cdot f$ mit $h\approx 4,220\cdot 10^{-15}$ eVs oder $h\approx 6,761\cdot 10^{-34}$ Js inklusive Dokumentation des Lösungsweges, z. B. durch lineare Regression oder Quotientenbildung.				
	Hinweis: Je nach verwendetem Verfahren treten Abweichungen bereits in der ersten Nachkommastelle auf.	1/11	6		
	Beurteilen der Aussage aufgrund einer schlüssigen Argumentation. Begründen z. B. durch: Thermische Anteile bei der Energieumwandlung erfordern zusätzlich zur Photonenemission zusätzliche elektrische Energie und damit größere Spannungen				
	$U_{\rm c}$; hierdurch ergibt sich ein größerer Wert für h .	11/111	4		
3.3	Ermitteln von $U_{\rm c}$ mithilfe eines selbsterstellten Diagramms durch zeichnerische Extrapolation unter Verwendung der letzten drei Messpunkte; $U_{\rm c}\approx 1,2~{\rm V}.$	1/11	5		
	Bestätigen, dass $\lambda \approx 1050~\mathrm{nm}$ (mit experimentell ermitteltem Wert von h) bzw. $\lambda \approx 1030~\mathrm{nm}$ (mit Literaturwert von h) ist; IR-Bereich (unsichtbar).	II	3		
3.4	Hypothese aufstellen, dass die LED neben Licht mit $\lambda \approx 570~\mathrm{nm}$ auch einen bedeutenden Anteil mit höherer Wellenlänge aussendet, wodurch der Stromfluss bei einem niedrigeren Wert U_c als erwartet einsetzt.	11/111	4		
	Gesamt		72		
	Erreichter prozentualer Anteil				

Die vom Prüfling gewählten Lösungsansätze und -wege müssen nicht mit denen der dargestellten Lösungsskizze identisch sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl unter Berücksichtigung der verbindlichen BE 1 bewertet.

Bewertungsmaßstab: Erreichte von möglichen Bewertungseinheiten

Ab Prozent	95	90	85	80	75	70	65	60	55	50	45	40	33	27	20	00
Punkte	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00